Droplet etching of deep nanoholes for filling with self-aligned complex quantum structures

نویسندگان

  • Achim Küster
  • Christian Heyn
  • Arne Ungeheuer
  • Gediminas Juska
  • Stefano Tommaso Moroni
  • Emanuele Pelucchi
  • Wolfgang Hansen
چکیده

Strain-free epitaxial quantum dots (QDs) are fabricated by a combination of Al local droplet etching (LDE) of nanoholes in AlGaAs surfaces and subsequent hole filling with GaAs. The whole process is performed in a conventional molecular beam epitaxy (MBE) chamber. Autocorrelation measurements establish single-photon emission from LDE QDs with a very small correlation function g ((2))(0)≃ 0.01 of the exciton emission. Here, we focus on the influence of the initial hole depth on the QD optical properties with the goal to create deep holes suited for filling with more complex nanostructures like quantum dot molecules (QDM). The depth of droplet etched nanoholes is controlled by the droplet material coverage and the process temperature, where a higher coverage or temperature yields deeper holes. The requirements of high quantum dot uniformity and narrow luminescence linewidth, which are often found in applications, set limits to the process temperature. At high temperatures, the hole depths become inhomogeneous and the linewidth rapidly increases beyond 640 °C. With the present process technique, we identify an upper limit of 40-nm hole depth if the linewidth has to remain below 100 μeV. Furthermore, we study the exciton fine-structure splitting which is increased from 4.6 μeV in 15-nm-deep to 7.9 μeV in 35-nm-deep holes. As an example for the functionalization of deep nanoholes, self-aligned vertically stacked GaAs QD pairs are fabricated by filling of holes with 35 nm depth. Exciton peaks from stacked dots show linewidths below 100 μeV which is close to that from single QDs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical Properties of GaAs Quantum Dots Fabricated by Filling of Self-Assembled Nanoholes

Experimental results of the local droplet etching technique for the self-assembled formation of nanoholes and quantum rings on semiconductor surfaces are discussed. Dependent on the sample design and the process parameters, filling of nanoholes in AlGaAs generates strain-free GaAs quantum dots with either broadband optical emission or sharp photoluminescence (PL) lines. Broadband emission is fo...

متن کامل

Single-dot Spectroscopy of GaAs Quantum Dots Fabricated by Filling of Self-assembled Nanoholes

We study the optical emission of single GaAs quantum dots (QDs). The QDs are fabricated by filling of nanoholes in AlGaAs and AlAs which are generated in a self-assembled fashion by local droplet etching with Al droplets. Using suitable process parameters, we create either uniform QDs in partially filled deep holes or QDs with very broad size distribution in completely filled shallow holes. Mic...

متن کامل

Role of Arsenic During Aluminum Droplet Etching of Nanoholes in AlGaAs

Self-assembled nanoholes are drilled into (001) AlGaAs surfaces during molecular beam epitaxy (MBE) using local droplet etching (LDE) with Al droplets. It is known that this process requires a small amount of background arsenic for droplet material removal. The present work demonstrates that the As background can be supplied by both a small As flux to the surface as well as by the topmost As la...

متن کامل

Fundamental role of arsenic flux in nanohole formation by Ga droplet etching on GaAs(001)

Nanoholes with a depth in the range of tens of nanometers can be formed on GaAs(001) surfaces at a temperature of 500°C by local etching after Ga droplet formation. In this work, we demonstrate that the local etching or nanodrilling process starts when the Ga droplets are exposed to arsenic. The essential role of arsenic in nanohole formation is demonstrated sequentially, from the initial Ga dr...

متن کامل

Thermally controlled widening of droplet etched nanoholes

We describe a method to control the shape of nanoholes in GaAs (001) which combines the technique of local droplet etching using Ga droplets with long-time thermal annealing. The cone-like shape of inverted nanoholes formed by droplet etching is transformed during long-time annealing into widened holes with flat bottoms and reduced depth. This is qualitatively understood using a simplified mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016